Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Calculation code of output current for self-powered radiation detector; Algorithm construction and comparison of calculation results

Shibata, Hiroshi; Takeuchi, Tomoaki; Seki, Misaki; Shibata, Akira; Nakamura, Jinichi; Ide, Hiroshi

JAEA-Data/Code 2021-018, 42 Pages, 2022/03

JAEA-Data-Code-2021-018.pdf:2.78MB
JAEA-Data-Code-2021-018-appendix(CD-ROM).zip:0.15MB

Japan Materials Testing Reactor (JMTR) in Oarai Research and Development Institute of the Japan Atomic Energy Agency has been developing various reactor materials, irradiation techniques and instruments for more than 30 years. Among them, the development of self-powered neutron detectors (SPNDs) and gamma detectors (SPGDs) has been carried out, and several research results have been reported. However, most of the results are based on the design study of the detector development and the results of in-core irradiation tests and gamma irradiation tests using Cobalt-60. In this report, a numerical code is developed based on the paper "Neutron and Gamma-Ray Effects on Self-Powered In-Core Radiation Detectors" written by H.D. Warren and N.H. Shah in 1974, in order to theoretically evaluate the self-powered radiation detectors.

Journal Articles

Development of radiation detectors for in-pile measurement

Takeuchi, Tomoaki; Otsuka, Noriaki; Shibata, Hiroshi; Nagata, Hiroshi; Endo, Yasuichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

KAERI/GP-418/2015, p.110 - 112, 2015/00

$$gamma$$ irradiation experiments with a $$^{60}$$Co source were carried out for developing Self-Powered Gamma Detectors (SPGDs) with lead (Pb) emitter and Self-Powered Neutron Detectors (SPNDs) with Pt-40%Rh emitter prior to in-core irradiation experiments. The results showed the output currents of the SPGDs were proportional to the $$gamma$$ dose rate in the range from about 200-6000 Gy/h with about 10% accuracy. In the case of SPNDs, the output currents flowed in inverse direction and were an order of magnitude lower compared with that of the SPGDs. These different behaviors of the output currents are considered to be caused by the difference in the emitter sizes and the current component originated at the MI cables.

Journal Articles

Characterization of self-powered neutron detector at high temperature under neutron irradiation

Nakamichi, Masaru; *; Kawamura, Hiroshi; Sagawa, Hisashi; Nakazawa, Masaharu*

Fusion Technology 1996, 0, p.1591 - 1594, 1997/00

no abstracts in English

Journal Articles

Experiments for optical neutron detection using nuclear pumped laser

Sakasai, Kaoru; Kakuta, Tsunemi; ; Nakazawa, Masaharu*; *; Iguchi, Tetsuo*

IEEE Transactions on Nuclear Science, 43(3), p.1549 - 1553, 1996/06

 Times Cited Count:7 Percentile:54.39(Engineering, Electrical & Electronic)

no abstracts in English

JAEA Reports

Journal Articles

In-core neutron meosurements using self-powered neutron detectors

; ; *

Hitachi Hyoron, 54(5), p.1 - 5, 1972/05

no abstracts in English

7 (Records 1-7 displayed on this page)
  • 1